Time to try the first run at training the model. Let’s see what happens!
2024-09-05 13:59:48,289 - INFO - Epoch 1
2024-09-05 13:59:48,289 - INFO - Train Loss: 0.0429, Train F1 (macro): 0.4998, Train F1 (micro): 0.9946, Train Hamming Loss: 0.0054, Train mAP: 0.0106
2024-09-05 13:59:48,289 - INFO - Val Loss: 0.0210, Val F1 (macro): 0.4991, Val F1 (micro): 0.9962, Val Hamming Loss: 0.0038, Val mAP: 0.1074
Training: 100%|████████████████████████████████████| 1022/1022 [07:40<00:00, 2.22it/s, loss=0.0196]
Validating: 100%|█████████████████████████████████████████████████| 146/146 [00:20<00:00, 7.16it/s]
2024-09-05 14:07:58,594 - INFO - Epoch 2
2024-09-05 14:07:58,594 - INFO - Train Loss: 0.0208, Train F1 (macro): 0.5210, Train F1 (micro): 0.9962, Train Hamming Loss: 0.0038, Train mAP: 0.1135
2024-09-05 14:07:58,594 - INFO - Val Loss: 0.0205, Val F1 (macro): 0.5629, Val F1 (micro): 0.9962, Val Hamming Loss: 0.0038, Val mAP: 0.1144
Training: 100%|████████████████████████████████████| 1022/1022 [07:40<00:00, 2.22it/s, loss=0.0153]
Validating: 100%|█████████████████████████████████████████████████| 146/146 [00:20<00:00, 7.17it/s]
[...]
2024-09-05 15:21:42,568 - INFO - Epoch 11
2024-09-05 15:21:42,568 - INFO - Train Loss: 0.0177, Train F1 (macro): 0.5805, Train F1 (micro): 0.9963, Train Hamming Loss: 0.0037, Train mAP: 0.1851
2024-09-05 15:21:42,568 - INFO - Val Loss: 0.0188, Val F1 (macro): 0.5663, Val F1 (micro): 0.9963, Val Hamming Loss: 0.0037, Val mAP: 0.1548
Training: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████| 1022/1022 [07:41<00:00, 2.21it/s, loss=0.0215]
Validating: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████| 146/146 [00:20<00:00, 7.15it/s]
[...]
2024-09-05 16:27:17,502 - INFO - Epoch 19
2024-09-05 16:27:17,502 - INFO - Train Loss: 0.0116, Train F1 (macro): 0.6765, Train F1 (micro): 0.9968, Train Hamming Loss: 0.0032, Train mAP: 0.4616
2024-09-05 16:27:17,502 - INFO - Val Loss: 0.0208, Val F1 (macro): 0.5698, Val F1 (micro): 0.9962, Val Hamming Loss: 0.0038, Val mAP: 0.1095
Training: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████| 1022/1022 [07:41<00:00, 2.21it/s, loss=0.0116]
Validating: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████| 146/146 [00:20<00:00, 7.13it/s]
2024-09-05 16:35:29,332 - INFO - Epoch 20
2024-09-05 16:35:29,332 - INFO - Train Loss: 0.0103, Train F1 (macro): 0.7092, Train F1 (micro): 0.9970, Train Hamming Loss: 0.0030, Train mAP: 0.5503
2024-09-05 16:35:29,332 - INFO - Val Loss: 0.0212, Val F1 (macro): 0.5895, Val F1 (micro): 0.9960, Val Hamming Loss: 0.0040, Val mAP: 0.1201
So, um. Reading the mAP values, it starts at bad, increases to slightly less bad, then the overfitting kicks in and training mAP gets excellent and validation mAP drops to bad again. Not great.
Read more...